Substituting a conserved residue of the ribonuclease H domain alters substrate hydrolysis by retroviral reverse transcriptase.

نویسندگان

  • J W Rausch
  • S F Le Grice
چکیده

Alterations to the highly conserved Asp549 of the retroviral ribonuclease H (RNase H) domain were evaluated in the heterodimeric (p66/p51) reverse transcriptases of human immunodeficiency and equine infectious anemia viruses. In addition to the polymerization-dependent and -independent modes of template hydrolysis, mutants were evaluated via their ability to select and extend the 3' polypurine tract (PPT) primers of these two lentiviruses into (+) strand DNA. Concerted and two-step reactions were designed to evaluate (+) strand priming, the latter of which allows discrimination between selection end extension events. In contrast to enzyme mutated at the highly conserved Glu478, substitution of Asp549 with Asn or Ala reduces, rather than completely eliminates, RNase H activity. When the requirement for RNase H function becomes more stringent, differences in activity are readily evident, most notably in the cleavage events liberating the 5' terminus of the PPT primer. PPT selection thus appears to represent a specialized form of RNase H activity that is more sensitive to minor structural alterations within this domain and may provide a novel therapeutic target.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNase H activity associated with reverse transcriptase from feline immunodeficiency virus.

Reverse transcription of retroviral genomes requires the action of an RNase H for template switching and primer generation. In this report, we compare enzymatic properties of the RNase H associated with the reverse transcriptase (RT) from feline immunodeficiency virus (FIV) and that from human immunodeficiency virus (HIV). Both enzymes displayed substrate preference for poly[3H](rG) . poly(dC) ...

متن کامل

Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus.

The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMR...

متن کامل

Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H.

In the presence of Mn2+, reverse transcriptase of both human immunodeficiency virus and murine leukemia virus hydrolyzes duplex RNA. However, designating this novel activity RNase D conflicts with Escherichia coli RNase D, which participates in tRNA processing. On the basis of its location in the RNase H domain, we propose that this novel retroviral activity be redesignated RNase H*.

متن کامل

Nonradioactive detection of retroviral-associated RNase H activity in a microplate-based, high-throughput format.

None of the available antiretroviral drugs that are currently used in the clinic to treat infection with HIV-1 is directed against the RNase H active site of the reverse transcriptase. Here we developed a nonradioactive, 96-well plate assay designed to be used for high-throughput screening of compounds capable of inhibiting the RNase H activity of HIV-1 reverse transcriptase. We employed a tRNA...

متن کامل

Asymmetric Subunit Organization of Heterodimeric Rous Sarcoma Virus Reverse Transcriptase ab: Localization of the Polymerase and RNase H Active Sites in the a Subunit

The genes encoding the a (63-kDa) and b (95-kDa) subunits of Rous sarcoma virus (RSV) reverse transcriptase (RT) or the entire Pol polypeptide (99 kDa) were mutated in the conserved aspartic acid residue Asp 181 of the polymerase active site (YMDD) or in the conserved Asp 505 residue of the RNase H active site. We have analyzed heterodimeric recombinant RSV ab and aPol RTs within which one subu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 13  شماره 

صفحات  -

تاریخ انتشار 1997